Электрические системы - определение. Что такое Электрические системы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Электрические системы - определение

Электрические системы; ЭЭС
Найдено результатов: 508
Электрические системы         

совокупность объединённых для параллельной работы электростанций (См. Электростанция), линии электропередачи (См. Линия электропередачи), преобразовательных подстанций (См. Преобразовательная подстанция) и потребителей электроэнергии. Э. с. имеет общий резерв и централизованное оперативно-диспетчерское управление для координации работы станций, подстанций и сетей. Часто Э. с. отождествляют с электроэнергетическими системами (ЭЭС), охватывающими теплоэлектроцентрали и тепловые сети. Электроэнергетическая система наряду с централизованным электроснабжением осуществляет централизованное Теплоснабжение городов и промышленных центров. В научно-техническом плане переход к более широкому понятию - "ЭЭС" означает рассмотрение и не только электрической части системы и происходящих в ней электрических и электромеханических процессов, но и учёт связанных и с ними механических и тепломеханических процессов, протекающих в турбинах, котлах, трубопроводах.

ЭЭС различают по установленной мощности (См. Установленная мощность), наличию связей с другими системами, структуре, генерирующим мощностям, территориальному охвату, плотности нагрузки, конфигурации. По установленной мощности системы разделяются (в первом приближении) на 3 группы: системы мощностью свыше 5 Гвт, от 1 до 5 Гвт, до 1 Гвт (к последней группе относятся также автономные системы электроснабжения, в том числе системы подвижных объектов - кораблей, самолётов и др.). Структура ЭЭС и установленная мощность зависят от типа и мощности входящих в систему электростанций (тепловых, гидроэлектрических, атомных и др.). Конфигурация ЭЭС и её коммутация могут быть различными (под конфигурацией системы понимается взаимное расположение входящих в ЭЭС электростанций, основных электрических сетей (См. Электрическая сеть) или, в случае объединённой системы, отдельных подсистем; под коммутацией ЭЭС понимаются связи между электростанциями и центрами потребления электроэнергии). Отдельные ЭЭС соединены между собой (в электрической части) магистральными связями, служащими для однонаправленной передачи мощности из одной системы в другую, и межсистемными связями (См. Межсистемная связь), предназначенными для взаимного обмена мощностью.

Работа Э. с. (или ЭЭС) характеризуется режимом - совокупностью процессов, определяющих в любой момент времени значения мощностей, напряжений, токов, частоты и других величин, меняющихся в процессе работы системы. Различают установившийся и переходный режимы работы ЭЭС. При установившемся режиме ЭЭС мощность, напряжения, токи и т. д. практически неизменны; при переходном режиме они меняются либо в результате управления, т. н. целенаправленного воздействия персонала или автоматических устройств, - нормальные переходные процессы, либо под действием появившихся случайных возмущений, нарушающих режим системы, аварийные переходные процессы. Соответственно различают нормальный режим, т. е. работу ЭЭС в заданных условиях, при нормальных показателях электроэнергии качества (См. Электроэнергии качество), и аварийный режим, т. е. работу ЭЭС при возникновении в ней аварий, или при показателях качества электроэнергии, отличных от нормальных. Послеаварийный режим определяется как состояние системы после устранения аварийных условий. Качество работы Э. с. в первую очередь зависит от надёжности электроснабжения и показателей качества электроэнергии. Надёжность ЭЭС в целом определяется главным образом устойчивостью э. с. и их способностью противостоять развитию аварий, т. е. живучестью системы. Надёжная работа ЭЭС при авариях в значит. мере обеспечивается противоаварийной автоматикой, содержащей Автоматическое регулирование возбуждения, релейную защиту (См. Релейная защита), а также профилактическую защиту, сообщающую о состоянии элементов системы и возникающей опасности их отказа. Противоаварийная автоматика содержит автоматическую разгрузку по частоте (АРЧ), а в ряде случаев и по напряжению (отключение части потребителей при опасном изменении этих параметров режима), Автоматическое включение резерва (АРВ), Автоматическое повторное включение (АПВ) элементов системы, автоматическую ликвидацию асинхронного хода у части системы, а также ряд других мероприятий.

Основная задача ЭЭС - обеспечить централизованное энергоснабжение при едином оперативно-диспетчерском регулировании процессов производства, передачи и распределения электроэнергии. В СССР управление работой ЭЭС возложено на диспетчерские службы районных энергоуправлений, подчинённых объединённым диспетчерским управлениям (ОДУ) ЭЭС. Оперативно-диспетчерское управление работой объединённых ЭЭС (ОЭЭС) осуществляется Центральным диспетчерским управлением Единой энергетической системы СССР (см. Энергосистемы диспетчерское управление).

Достижение оптимального уровня электрификации страны при наиболее экономичном и бесперебойном электроснабжении требует решения многих научных задач, в том числе по оптимизации развития и оперативному управлению работой ЭЭС. При решении этих задач широко используют Системный подход, Системный анализ и средства кибернетики (См. Кибернетика).

Создание ЭЭС обеспечивает экономически целесообразное увеличение мощности электрических станций и энергоагрегатов; повышает надёжность энергоснабжения за счёт более гибкого маневрирования резервами Э. с.; снижает общий (совмещенный) максимум нагрузки вследствие несовпадения суточных пиков нагрузки по отд. районам, что приводит к снижению потребной мощности в объединённой энергосистеме; позволяет устанавливать наиболее выгодные режимы работы для различных типов электростанций и агрегатов; способствует сокращению перевозок топлива и широкому использованию гидроэнергетических ресурсов, часто удалённых от основных потребителей электроэнергии на значительные расстояния.

Создание связей между Э. с. усиленно ведётся также в странах Западной Европы и в США. Однако образование Единой Э. с. в национальном масштабе не увязывается с капиталистическим способом производства. Электроснабжение, осуществляемое отд. Э. с., связанными только взаимной продажей электроэнергии, часто не обеспечивает требуемого качества электроэнергии, что находит отражение в несоответствии развитой техники технико-экономическим и социальным условиям. Для преодоления этого несоответствия в США, например, пошли по пути создания т. н. пулов и сверхпулов - объединений частных компаний, задача которых заключается в совместной разработке и эксплуатации Э. с.

В СССР развитие Э. с. неразрывно связано с концентрацией производства электроэнергии и централизацией её распределения. К 1970 было практически завершено создание Единой электроэнергетической системы Европейской части СССР (ЕЭЭС). В её состав вошли 61 районная ЭЭС и 7 ОЭЭС. Созданы ОЭЭС Сибири и Средней Азии. Большое развитие получила международная ЭЭС "Мир", объединяющая ЭЭС стран - членов СЭВ (см. Энергетические объединения международные).

Лит.: Электрические системы. - 1-7, М., 1970-77; Веников В. Л., Мелентьев Л. А., Задачи оптимального оперативного управления в электроэнергетических системах, "Вести. АН СССР", 1975, №7; Чернухин А. А., Флакеерман Ю. Н., Экономика энергетики СССР, 2 изд., М., 1975; Виленский М. А., Экономические проблемы электрификации СССР, М., 1975; Мелентьев Л. А., Оптимизация развития и управления больших систем энергетики, М., 1976.

В. А. Веников.

ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА         
объединение электростанций, связанных линий электропередачи и совместно питающих потребителей электроэнергии. См. также Единая электроэнергетическая система.
Электроэнергетическая система         
Электроэнергетическая система — cовокупность объектов электроэнергетики и энергопринимающих установок потребителей электрической энергии, связанных общим режимом работы в едином технологическом процессе производства, передачи и потребления электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике.Федеральный закон от 26.
Системы полива         
  • Системы полива на полях
Систе́мы поли́ва — различного вида инженерно-технические комплексы, обеспечивающие орошение определенной территории.
Буферные системы крови         
Бу́ферные систе́мы кро́ви (от , buff — «смягчать удар») — физиологические системы и механизмы, обеспечивающие заданные параметры кислотно-основного равновесия в кровиБерезов Т. Т.
Буферные системы         

буферные растворы, буферные смеси, системы, поддерживающие определённую концентрацию ионов водорода Н+, то есть определённую кислотность среды. Кислотность буферных растворов почти не изменяется при их разбавлении или при добавлении к ним некоторых количеств кислот или оснований.

Примером Б. с. служит смесь растворов уксусной кислоты CH3COOH и её натриевой соли CH3COONa. Эта соль как сильный электролит (См. Электролиты) диссоциирует практически нацело, т. е. даёт много ионов CH3COO-. При добавлении к Б. с. сильной кислоты, дающей много ионов Н+, эти ионы связываются ионами CH3COO- и образуют слабую (то есть мало диссоциирующую) уксусную кислоту:

Наоборот, при подщелачивании Б. с., то есть при добавлении сильного основания (например, NaOH), ионы OH- связываются Н+-ионами, имеющимися в Б. с. благодаря диссоциации уксусной кислоты; при этом образуется очень слабый электролит - вода:

По мере расходования Н+-ионов на связывание ионов OH- диссоциируют всё новые и новые молекулы CH3COOH, так что равновесие (1) смещается влево. В результате, как в случае добавления Н+-ионов, так и в случае добавления ОН--ионов, эти ионы связываются и потому кислотность раствора практически не меняется.

Кислотность растворов принято выражать так называемым водородным показателем (См. Водородный показатель) pH (для нейтральных растворов pH=7, для кислых - pH меньше, а для щелочных - больше 7). Приливание к 1 л чистой воды 100 мл 0,01 молярного раствора HCl (0,01 М) изменяет pH от 7 до 3. Приливание того же раствора к 1 л Б. с. CH3COOH + CH3COONa (0,1 М) изменит pH от 4,7 до 4,65, то есть всего на 0,05. В присутствии 100 мл 0,01 М раствора NaOH в чистой воде pH изменится от 7 до 11, а в указанной Б. с. лишь от 4,7 до 4,8. Кроме рассмотренного, имеются многочисленные другие Б. с. (примеры см. в табл.). Кислотность (и, следовательно, pH) Б. с. зависит от природы компонентов, их концентрации, а для некоторых Б. с. и от температуры. Для каждой Б. с. pH остаётся примерно постоянным лишь до определённого предела, зависящего от концентрации компонентов.

Примеры буферных систем

------------------------------------------------------------------------------------------

| Компоненты | pH |

| (концентрации по 0,1 г мол/л) | (при |

| | 15-250C) |

|----------------------------------------------------------------------------------------|

| Уксусная кислота + ацетат натрия, CH3 | 4,7 |

| COOH + CH3COONa | |

|----------------------------------------------------------------------------------------|

| Лимоннокислый натрий | 5,0 |

| (двузамещеный), C6H6O7Na2 | |

|----------------------------------------------------------------------------------------|

| Борная кислота + бура, | 8,5 |

| Н3ВО3 + Na2B4O7 10H2O | |

|----------------------------------------------------------------------------------------|

| Борная кислота + едкий натр, | 9,2 |

| Н3ВО3 + NaOH. | |

|----------------------------------------------------------------------------------------|

| Фосфат натрия (двузамещеный)+ | 11,5 |

| + едкий натр, Na2HPO4 + NaOH | |

------------------------------------------------------------------------------------------

Б. с. широко используются в аналитической практике и в химическом производстве, так как многие химические реакции идут в нужном направлении и с достаточной скоростью лишь в узких пределах pH. Б. с. имеют важнейшее значение для жизнедеятельности организмов; они определяют постоянство кислотности различных биологических жидкостей (крови, лимфы, межклеточных жидкостей). Основные Б. с. организма животных и человека: бикарбонатная (угольная кислота и её соли), фосфатная (фосфорная кислота и её соли), белки (их буферные свойства определяются наличием основных и кислотных групп). Белки крови (прежде всего гемоглобин, обусловливающий около 75\% буферной способности крови) обеспечивают относительную устойчивость pH крови. У человека pH крови равен 7,35-7,47 и сохраняется в этих пределах даже при значительных изменениях питания и др. условий. Чтобы сдвинуть pH крови в щелочную сторону, необходимо добавить к ней в 40-70 раз больше щёлочи, чем к равному объёму чистой воды. Естественные Б. с. в почве играют большую роль в сохранении плодородия полей.

В. Л. Василевский.

ЭЛЕКТРИЧЕСКИЕ СКАТЫ         
  • Парные электрические органы.
РЫБА
Скаты электрические; Torpediniformes; Гнюсообразные; Электрический скат; Электроскат; Электроскаты
(гнюсообразные) , отряд хрящевых рыб, надотряд скатов. Имеют электрические органы. Длина тела до 1,8 м, весят до 90 кг. Более 30 видов, в Атлантическом, Тихом, Индийском океанах и в Средиземном м. В водах России не встречаются.
Электрические скаты         
  • Парные электрические органы.
РЫБА
Скаты электрические; Torpediniformes; Гнюсообразные; Электрический скат; Электроскат; Электроскаты
Электри́ческие ска́ты, или гнюсообра́зные  — отряд хрящевых рыб, у которых по бокам тела между головой и грудными плавниками расположены почкообразные парные электрические органы, состоящие из видоизменённой мышечной ткани. Однако, отсутствуют слабые электрические органы, имеющиеся в наличии у семейства ромбовых по обе стороны хвоста. Голова и туловище образуют дискообразную форму. Относительно короткий хвост имеет хвостовой плавник, а также до двух верхних плавников. В отряде числятся 4 семейства и 69 видов. Электрические скаты известны своей спосо
Электрические скаты         
  • Парные электрические органы.
РЫБА
Скаты электрические; Torpediniformes; Гнюсообразные; Электрический скат; Электроскат; Электроскаты
(Тогреdiniformes)

отряд рыб, называемый иногда отрядом гнюсообразных. Тело уплощённое, почти круглое, толстое и мясистое. Длина до 1,8 м, весят до 90 кг. Имеют Электрические органы, расположенные по бокам туловища. Обитают в тропических и субтропических морях, в основном на мелководье, некоторые виды - на глубине до 1000 м. Питаются преимущественно донными беспозвоночными. В отряде 3 семейства: Э. с., или гнюсы (Torpedinidae), Narkidae и Temeridae. Особенно широко распространено семейство Torpedinidae, включающее 7 родов с 30 видами. Наиболее богат видами род Torpedo, из которого более других известен обыкновенный Э. с. (Т. marmorata), знакомый ещё древним обитателям Средиземноморья: они использовали его для лечения подагры. У Новой Зеландии обитает слепой Э. с. (Typhlonarke aysoni). Промысловое значение Э. с. невелико.

Лит.: Жизнь животных, т. 4, ч. 1, М., 1971.

В. М. Макушок.

Мезоамериканские системы письма         
  • Стела 5 из [[Такалик-Абах]]а
  • 62 знака на Каскахальском блоке
  • Попытка дешифровки Кауфмана и Джастесона, опровергнутая более поздними исследованиями.
  • англ.]]) — надпись в три столбца, датировка около II в. н. э.
  • Монумент 3 в Сан-Хосе-Моготе. Два затёртых знака между ногами вождя предположительно означают его имя, Землетрясение 1
  • Паленке]], Мексика
Мезоамериканские системы письма — возникшие независимо от других центров возникновения письменности системы письма индейских культур центральной Америки. Расшифрованные до настоящего момента письменности Мезоамерики сочетали в себе особенности логографии и слоговых письменностей, и по этой причине (а также из-за рисуночного внешнего вида знаков) нередко именуются «иероглифами».

Википедия

Электроэнергетическая система

Электроэнергетическая система (ЭЭС) — cовокупность объектов электроэнергетики и энергопринимающих установок потребителей электрической энергии, связанных общим режимом работы в едином технологическом процессе производства, передачи и потребления электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике.

Электроэнергетическая система включает в себя электростанции, а также установки, потребляющие электроэнергию, электрические линии, связывающие их с электростанциями, электрические распределительные устройства с повышающими и понижающими трансформаторами. Дальний транспорт электроэнергии на расстояния до тысячи километров осуществляется по линиям электропередачи (ЛЭП) высокого напряжения 100…750 кВ, ближний транспорт — по линиям электропередачи меньшего напряжения до 100 кВ.

Что такое Электр<font color="red">и</font>ческие сист<font color="red">е</font>мы - определение